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Abstract

This paper refines the subgroupings of the Timor-Alor-Pantar (TAP) family of Papuan

languages, using a systematic Bayesian phylogenetics study. While recent work indi-

cates that theTAP family comprises aTimor (T) branchandanAlor-Pantar (AP)branch

(Holton et al., 2012; Schapper et al., 2017), the internal structure of the AP branch has

proven to be a challenging issue, and earlier studies leave large gaps in our understand-

ing. Our Bayesian inference study is based on an extensive set of TAP lexical data from

the online LexiRumah database (Kaiping et al., 2019b; Kaiping and Klamer, 2018). Sys-

tematically comparing different analyticalmodels and tying themback to the evidence

in terms of historical linguistics, we arrive at a subgrouping structure of the TAP family

that is based on features of the phylogenies shared across the different analyses. Our

TAP treediffers fromall earlier proposals by inferring theEastAlor subgroupas an early

split-off from all other AP languages, instead of the most deeply embedded subgroup

inside that branch. The evidences suggests that dialect cluster effects played a major

role in the formation of today’s Timor-Alor-Pantar languages.
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1 Introduction

The Timor-Alor-Pantar (TAP) languages are a family of some 25 non-Austrone-

sian or “Papuan” languages spoken on the islands of Timor, Alor, and Pantar,

as well as on neighboring smaller islets, located some 1,000 kilometers west

of New Guinea (Holton et al., 2012; Schapper et al., 2017; Holton and Robinson,

2017; Klamer, 2017). TheTAP family is split into three branches: Bunak; the East

Timor group comprising the languages Makasae (with its dialect Makalero),

Fataluku, and Oirata; and the Alor-Pantar (AP) branch, which comprises the

remaining languages. For an overviewof theTAP languages and their locations,

see Fig. 1 and Table 1.

Bunak, Makasae, and Fataluku are spoken on the island of Timor; the lan-

guage Oirata is spoken on the neighboring island of Kisar; the languages

Hamap, Adang, Kabola, Klon, Kafoa, Kui, Kiraman, Abui, Papuna, Kula, Saw-

ila, Wersing, the languages of the Kamang cluster (including Suboo), and one

dialect of Reta are spoken onAlor; Kaera, Klamu, Deing, Teiwa,Western Pantar,

Sar, Kroku, and most Blagar varieties are spoken on the island of Pantar; while

Blagar-Pura and Reta are spoken on the island of Pura in the Straits between

Alor and Pantar.

Most of the TAP languages have speaker communities ranging between

1,000 and 10,000 speakers (see Table 1). For the entire TAP family, the aver-

age number of speakers per language is 12,023 due to the three big languages

Bunak (80,000 speakers), Fataluku (30,000), andMakasae (70,000), spoken on

Timor. For theAPbranch, the averagenumber of speakers per language ismuch

lower (4,510).On the lowendof the scale, Klamuhas only 200 speakers (Holton,

2004), while Sar had only one active speaker left in 2018 (Klamer and Sir, 2018)

who passed away in 2019. The Kroku language is barely documented and pos-

sibly extinct (Schapper, 2020; Steinhauer, 2020), and will not feature further in

this article for lack of data.

The relatively small size of most of these speaker communities and the lim-

ited geographical area inwhich they live has resulted in a situationwhere tradi-

tionally neighboring groups had much contact through (barter) trade, cultural

exchanges. and intermarriage. Contact with one or more Austronesian donor

language(s) goes back a long way, as evidenced by the Austronesian loans that

were borrowed into the AP proto-language before it split up, perhaps 3,000



276 kaiping and klamer

Language Dynamics and Change 12 (2022) 274–326

figure 1 Map of the Timor-Alor-Pantar languages. All relevant islands are given in the bottommap,

while an expanded view of Pantar and Alor is given above

years ago (see Section 2.5;Holton et al., 2012).The ancient contact betweenTAP

and Austronesian languages continued through pre-modern times (Klamer, to

appear) and has resulted in Austronesian loanwords in the individual TAP lan-

guages.

Three modern donor languages of Austronesian loanwords are Indonesian,

the dominant national language of Indonesia, and/or its basilect Alor Malay;

Alorese, the lingua franca used on (parts of) Pantar and West Alor before
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table 1 Languages of the TAP family with the island where they are spoken and the num-

ber of speakers, and the dialects present in our dataset

Language iso Population Dialect Island Glottocode

Abui abz 17000 Atimelang Alor atim1239

Fuimelang Alor abui1241

Petleng Alor abui1241

Takalelang Alor abui1241

Ulaga Alor abui1241

Adang adn 7000 Lawahing Alor adan1251

Otvai Alor adan1251

Blagar beu 10000 Bakalang Pantar baka1276

Bama Pantar blag1240

Kulijahi Pantar blag1240

Manatang Pantar blag1240

Nule Pantar blag1240

Pura Pura pura1258

Tuntuli Pantar blag1240

Warsalelang Pantar blag1240

Bunak bfn 80000 Bobonaro Timor buna1278

Maliana Timor buna1278

Suai Timor buna1278

Deing twe 1000 Deing Pantar dein1238

Fataluku ddg 30000 Fataluku Timor fata1247

Hamap hmu 1300 Moru Alor hama1240

Kabola klz 3900 Monbang Alor kabo1247

Kaera jka 5500 Abangiwang Pantar kaer1234

Kafoa kpu 1000 Probur Alor kafo1240

Kamang woi 6000 Kamang-Atoitaa Alor kama1365

Suboo-Apui Alor sibo1242

Suboo-Atiibaai Alor sibo1242

Tiyei Alor tiay1238

Kiraman kvd 1900 Kiraman Alor kira1248

Klamu nec *200 Klamu Pantar nede1245

Klon kyo 5000 Bring Alor kelo1247

Hopter Alor kelo1247

Kui kvd 1900 Labaing Alor kuii1253

Kula tpg 5000 Lantoka Alor kula1280

Kroku – – Pantar nort3371
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table 1 Languages of the TAP family (cont.)

Language iso Population Dialect Island Glottocode

Makasae mkz 70000 Makasae Timor maka1316

Oirata oia 1220 Oirata Kisar oira1263

Papuna – Papuna Alor —

Reta ret *2500 Hula Alor rett1240

Pura Pura rett1240

Ternate Ternate rett1240

Sawila swt 3000 Maritaing Alor sawi1256

Sar – *1 Sar Pantar sarr1247

Teiwa twe 4000 Adiabang Pantar teiw1235

Lebang Pantar leba1239

Nule Pantar teiw1235

Wersing kvw 3700 Maritaing Alor wers1238

Taramana Alor wers1238

Western Pantar lev 10300 Tubbe Pantar lamm1241

speaker numbers are taken from klamer (2017: table 1), except those marked

with an asterisk: reta is taken from willemsen (2020), klamu from holton

(2004), and sar from klamer and sir (2018)

the advent of Malay/Indonesian; and Tetun, one of the national languages of

Timor-Leste.

Over the last 15 years, a body of work on TAP languages has appeared,

including grammatical descriptions, typological comparisons, and historical

comparative work. Historical reconstructions using the traditional compara-

tive method based on regular sound changes first demonstrated the existence

of an Alor-Pantar group (Holton et al., 2012) and an East Timor group (Schap-

per et al., 2012), followed by a demonstration that the groups together form the

TAP family (Schapper et al., 2017).

If and how the TAP family relates to other families is examined by Holton

and Robinson (2017), who conclude that there is currently no lexical evidence

to support an affiliation with any other family in the world, including the Trans

New Guinea family, in contrast to what had been assumed previously (Wurm

et al., 1975; Ross, 2005).

A tree reflecting the internal structure of the AP branch was proposed in

Holton et al. (2012); see Fig. 2. Robinson and Holton (2012a) compared this tree

with a Bayesian phylogenetic inference tree, given in Fig. 3. Both trees were

created using data collected up to 2009. Since then, the sample of TAP lan-



the dialect chain of the timor-alor-pantar language family 279

Language Dynamics and Change 12 (2022) 274–326

figure 2

Subgroupings tree based on shared

phonological innovations, according to

Holton et al. (2012)

figure 3

Non-ultrametric tree from Bayesian

phylogenetic inference with a stochas-

tic Dollo model, as described in and

reproduced from Robinson and Holton

(2012a). The languages are the same, in

the same order, as Fig. 2.

guage varieties has increased from 12 to nearly 50. The newword lists have been

combined with the earlier body of data and made available in the LexiRumah

database (Kaiping et al., 2019b; Kaiping andKlamer, 2018). On themethodolog-

ical side, recent years have seen a significant improvement of computational

tools, practices, models, and algorithms for inferring language histories from

word lists. For example, there are now new methods for automatic cognate

detection using state-of-the-art pairwise phonetic alignment algorithms (Jäger

et al., 2017; List, 2012a; List et al., 2017; List, 2012b; List et al., 2018b) that reach

nearly 90% accuracy (B-cubed F-score) in determining the cognate sets to be

used in phylogenetic analyses (Rama et al., 2018). Bayesian phylogenetic infer-

ence research has empirically shown which models are useful for lexical data
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(Chang et al., 2015; Kolipakam et al., 2018). In order to apply phylogenetics

to linguistic data, tools such as beastling (Maurits et al., 2017) and Lexedata

(Kaiping et al., 2021) provide ways to transform data sets conforming to cross-

linguistic standards (Forkel et al., 2017, 2018) into the data structures used by

phylogenetic software.

The earlier reconstructions of the TAP family (Schapper et al., 2017; Holton

et al., 2012; Robinson and Holton, 2012a) conclusively show the relatedness of

the languages. However, they leave large gaps in our understanding of the lin-

guistic history of the TAP family, especially in its subgrouping. In this paper we

re-address the subgrouping of the TAP family, with a particular focus on the

internal structure of the AP subfamily, while making all the analytical steps

involved as visible and explicit as possible. We reduce the subjectiveness of

the subgrouping task by applying recently developed computational tools and

models. Our data is the now extensive lexical data set of TAP languages that

is publicly available in LexiRumah 3.0.0 (Kaiping et al., 2019b). We focus on

the lexicon as a data type that is quantitatively well understood and for which

models of evolution exist.

These computational models of lexical evolution currently rely on cognate-

coded word list data. Each language variety is represented by its forms (words)

that best represent a list of pre-defined meanings or concepts. Forms are

grouped in cognate classes according to common origin. An example for a list

with the four given concepts ‘arm’, ‘arrow’, ‘bamboo’, and ‘to blaze; to shine’ in

two language varieties can be found in Table 2.

For this article, we use state-of-the-art automatic cognate detection algo-

rithms to approximate the incremental process of selecting cognate sets and

identifying regular sound changes (see Section 2.2). We systematically exclude

loanwords from Malay/Indonesian and Tetun from our data set, and we com-

pare the results of each method. The weighting of the subgrouping evidence

is done through explicit, stochastic models for the evolution of the lexicon.

At their core, these models assume that a meaning keeps being expressed by

words derived from a particular root for some time, but that a stochastic pro-

cess removes existing associations between meanings and roots and creates

new associations. In order to be computationally tractable, the models make

different assumptions about the independence of the stochastic processes. For

example, they generally assume that the words expressing different concepts

evolve independently, which is a reasonable assumption for forms with sep-

arate meanings (e.g., ‘to sit’ and ‘sacrifice’), but a necessary simplification for

forms that express semantically similar meanings (e.g., ‘to sit’ and ‘to dwell’).

We explicitly compare two such models.

All our parameter values and the implementations of ourmethods in unam-

biguous computer algorithms are provided open for inspection, available as
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table 2 Example word list for two varieties and four concepts,

with forms coded for cognacy (columns C). Cognate

forms are given the same code and the same color.

Concept Abui-Fuimelang Blagar-Bakalang

(English gloss) C Form C Form

arm 1 tataŋ 1 ataŋ

arrow 2 kaike 3 bulit

bamboo 4 mai 5 petuŋ

4 maija

to blaze; to shine 6 hiede 7 bolor

6 ede

online supplementary material and through https://osf.io/h4nxk/?view_only=​

8dd7b81f03304d5085191424bd709517. The robustness of all our results is inves-

tigated under several alternative models and parameter choices, each with dif-

ferent random seeds.

2 Data andmethods

Running a Bayesian phylogenetic inference procedure on lexical data has the

following requirements: (1) The lexical data must be in a comparable format

(phonetic or phonemic), with clean meaning-form mappings, and (2) coded

for cognacy; (3) loanwords must be handled such that the phylogenetic signal

is not dominated by the contact signal of the borrowings; (4) a computational

model of lexical evolution must be specified; and (5) the posterior probability

of the possible evolutionary histories in the model, given the cognate-coded

data, must be calculated. In the following subsections we will discuss each of

these steps.

The result of a Bayesian inference is a posterior probability distribution of

trees often characterized by aDensiTree visualization (Bouckaert, 2010; Bouck-

aert and Heled, 2014) of trees sampled from the distribution, or by a consensus

tree summarizing properties of the trees in the distribution.

For example, Fig. 4 shows the probability distribution corresponding to

“80%certainty that languageA and language B aremore closely related to each

other than to language C, and no other information” (cf. Fig. 4a), and visualizes

https://osf.io/h4nxk/?view_only=8dd7b81f03304d5085191424bd709517
https://osf.io/h4nxk/?view_only=8dd7b81f03304d5085191424bd709517
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figure 4a

Probability distribution of trees

figure 4b

DensiTree visualization of the

sample. The node ages were

jittered to better show the dis-

tribution

figure 4c

Consensus tree

with clade proba-

bilities

figure 4d Random posterior sample of trees

figure 4 Probability distribution of trees. DensiTree visualization of the sample. The node

ages were jittered to better show the distribution. Consensus tree with clade

probabilities. Random posterior sample of trees. Various representations of the

tree distribution “80% certainty that A and B are more closely related to each

other than to C, and no other information”.

it using DensiTree (Fig. 4b) and a maximum clade credibility summary tree

(Fig. 4c). All prior knowledge and all results of Bayesian phylogenetics are in

principle such quantitative certainty statements. The posterior distribution is

generated as a long sequence of trees, each with frequency according to its cer-

tainty (Fig. 4d).

We run and compare analyses with different choices for data, models, and

model parameters. The various models, and the abbreviations we will use to

refer to them, are summarized in Table 3.

2.1 Data

As mentioned above, the data for this study is taken from the open-access

LexiRumah database (Kaiping and Klamer, 2018). The most recent version of

the database, v3.0.0 (Kaiping et al., 2019b), contains 357 language varieties (or

“lects”), 48 of which are extant Timor-Alor-Pantar languages, and three com-

parative reconstructions of TAP proto-languages, namely proto-Timor-Alor-

Pantar, proto-Alor-Pantar and proto-East Timor-Bunak.

The forms of the proto-languages are not independent of the other data

points (because some of them have been used in the reconstruction proce-

dure), so we did not include them in our analyses. The remaining 48 word lists

of TAP languages have been aggregated from various recent sources and are
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table 3 Summary of the phylogenetic analyses considered in this article. id = names of models of

analysis as referred to in the text. No. C = the resulting number of binary characters included

in the analysis. All analyses use per-character Γ rate variation and split calibrations on TAP,

AP, and the parent of Oirata, and exclude Indonesian and Tetun loans.

id Cognate coding No. C Evolutionary model Tree model Clock model

S LexStat-Infomap (θ = 0.55) 9274 Binary Birth-death Strict clock

T (as S) 9274 (as S) Uniform (as S)

M (as S) 9274 Binary covarion (as S) (as S)

C (as S) 9274 (as S) (as S) Relaxed clock

MT (as S) 9274 Binary covarion Uniform (as S)

MC (as S) 9274 Binary covarion (as S) Relaxed clock

TC (as S) 9274 (as S) Uniform Relaxed clock

X (as S) 9274 Binary covarion Uniform Relaxed clock

D1 LexStat-Infomap (θ =
0.55), but with asjp instead

of sca as sound class model

9268 (as S) (as S) (as S)

D2 LexStat-Infomap (θ = 0.35) 14596 (as S) (as S) (as S)

D3 LexStat-Infomap (θ = 0.75) 5259 (as S) (as S) (as S)

D4 OnlinePMI 9268 (as S) (as S) (as S)

not all equally long. Originally, their sources may have used different gloss-

ing conventions, but LexiRumah provides manually normalized Concepticon

mappings (List et al., 2016) for all its concepts. In this way, meanings that are

glossed differently across different sources (e.g., the forms glossed as ‘saya’ by

Keraf, 1978, and as ‘I’ in Blust, 1999) are linked to the same underlying concept

(in this case ‘1sg; https://concepticon.clld.org/parameters/1209’). Each lexeme

in the database is presented with a transcription as supplied by the original

source, and a normalized, segmented phonetic transcription in ipa (using dia-

critics only in those cases where that level of detail is available in the original

source).

Somewords occur in sets that are highly correlated in shape. For example, in

a language with a decimal numeral system, the number words above ‘ten’ will

typically have forms reflecting the morpheme for ‘ten’; and when the form for

‘ten’ has been replaced in a language (by, e.g., a borrowing), it is very likely that

the forms for ‘twenty’, ‘thirty’, and so on, or the forms for ‘nineteen’, ‘eighteen’,

and so on, also change. So we excluded the 25 decimally composite numeral

concepts from the word lists in our sample. Some but not all of the TAP lan-

guages have quinary numeral systems, so that the numbers ‘six’ to ‘ten’ are

https://concepticon.clld.org/parameters/1209
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multi-morphemic in some languages but not in others. Therefore we kept the

numeral concepts up to ‘ten’ throughout.

After removing 25 numeral concepts, each TAP lect in our data is attested

through a word list containing between 99 (Abui-Petleng variety) and 553

(Fataluku) forms spanning 582 concepts. The mean number of forms for each

TAP word list is 462.5, representing on average 416.9 different concepts, due to

an average synonym count of 1.1 forms per filled concept-language slot. Apart

from the very shortword list of Abui-Petleng, any twoword lists in our database

share at least 114 concepts.

2.2 Cognate coding

In the context of this paper, we use cognates as a shorthand to mean ‘words of

shared etymological origin with the samemeaning’ (with the additional caveat

that our shared etymological origins are not posited by a human linguist with

background knowledge in the languages, but by a computer program following

heuristics to approximate systematic sound changes, to be explainedbelow). In

this definition, we do in principle include borrowed items.While the notion of

cognacy is not entirely clear—see List (2016) for an in-depth discussion—this

is an extension from the usual meaning of cognate even in linguistic phyloge-

netics. An explanation of this choice, largely following Chang et al. (2015), is

given in Section 2.3.

In order to ensure full control over the establishment of cognate classes and

to investigate the robustness of results under different methods, we ran differ-

ent existing automatic cognate detection algorithms on our data. A natural-

language description of the underlying processes and intuitions can be found

in Appendix A.

Inmost of our analyses, we use the LexStat algorithm (List, 2012a), which has

been shown to perform very well for the purpose of cognate coding (List et al.,

2017), and is easily available in the LingPy software package for historical lin-

guistics (List et al., 2018b). LexStat requires at least 100 shared concepts towork

well (List, 2014), so we expect the Abui-Petleng word list, which is below this

number, to not be coded particularly well. As the baseline sound class model

for LexStat, we use the ‘sca’ sound class model introduced by List (2012b). For

comparison, we also run one analysis (D1) using the asjp sound classes devel-

oped for the Automated Similarity Judgment Program (Wichmann et al., 2016).

We follow List et al. (2017) and cluster forms into cognate classes using

Infomap (Rosvall and Bergstrom, 2008) on an unweighted graph connecting

pairs of forms that have a “cognate-ness distance” less than a threshold θ.
In general, we use the threshold of θ = 0.55 that performed best in List et

al.’s analysis. However, for comparison we also present results generated from
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thresholds based on approaches that are more “splitting” (D2: θ = 0.35) and
more “lumping” (D3: θ = 0.75).

An alternative to LexStat is the OnlinePMImethod published by Rama et al.

(2017). OnlinePMI performed better than LexStat in identifying cognate classes

(Rama et al., 2017), but it gave worse results when reconstructing trees using

Bayesian phylogenetics on the bases of these classes (Rama et al., 2018).1 Com-

pared to LexStat, the OnlinePMI method is better able to handle data with

lower numbers of shared concepts. This comes at the cost of a significant

random component, making it harder to optimize OnlinePMI for a particular

application.

Due to these advantages and disadvantages, we chose LexStat as our base-

line method, but included OnlinePMI for a comparative investigation (D4). In

that analysis we cognate-coded our data using OnlinePMI, with parameters

α = 0.75, initial cut off c = 0.5, and batch size m = 256, following the gen-

eral observations of Rama et al. (2017). We use the implementation available

from https://github.com/evolaemp/online_cognacy_ident in the version from

commit 3b998ae.

2.3 Lexical borrowing

Asmentioned above, the history of theTimor-Alor-Pantar languages is strongly

influenced by language contact, and multilinguality is usual in the region

(Klamer, 2017; Holton and Klamer, 2017). At present, standard Indonesian and

localMalay have a strong influence on the vocabulary of all the TAP languages,

and Tetun has influenced those spoken in Timor-Leste.

Some studies have argued that the results of phylogenetic analyses will be

reasonably accurate even if 15% of the vocabulary consists of undetected loan-

words (Greenhill et al., 2009; Chang et al., 2015).Treemodels canby their nature

not encompass borrowing, so that undetected loans and chance resemblances

in the data are problematic for them. Therefore, some studies exclude loans by

representing a loanword that is connected to a specific meaning as a “missing”

or “unknown” form. However, as Chang et al. (2015) point out, loans repre-

sent one case of exactly the type of lexical replacement that the phylogenetic

inference models purport to model, so it would be ill-advised to treat them as

missing or unknown data when applying such models.

1 It is not particularly surprising that an algorithmmay perform better in one of these tasks but

worse in the other task. The measure used for assessing the quality of cognate coding may,

for example, barely punish a small systematic bias in the cognate classes, which however is

important when using these classes to reconstruct trees.

https://github.com/evolaemp/online_cognacy_ident
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All languages, however, have loans that result from borrowing events that

occurred so recently that the loans entered the languages as independent

events, that is, they were not inherited from any level of common ances-

tor. For example, most languages in LexiRumah express the concept ‘church’,

a concept which became widely known in the region only in the last 300

years, with forms like [gered͡ʒa] or [igred͡ʒa], which are obvious recent Indone-

sian or Portuguese loans. Such recent loans do not carry the same phylo-

genetic signal as the rest of the data. Yet, the presence of a similar word

makes the donor language and all the recipient languages appear closer to

each other than their actual genealogical relationship would suggest. There-

fore, it makes sense to treat each of these recently borrowed forms as an iso-

late cognate class, distinct from each other and any other cognate class in the

data.

In our binary model of cognate evolution (see Section 2.4), in which each

pair of a cognate class and a meaning is coded separately as either present

or absent, this is functionally equivalent to only providing presence/absence

features for non-loanword cognate classes, and coding all cognate classes for a

concept expressed using a recent loan as “absent”. We do this as follows.

LexiRumah contains word lists for Indonesian and different Tetun vari-

eties. Indonesian and the locally used variety of Malay are lexically very sim-

ilar, and both are the source for the majority of recent loans in the TAP lan-

guages (Klamer, 2017: 11–12). In order to exclude recent loans from our data

set, we therefore set all cognate classes to be “absent” for concepts in lan-

guages where the only form appears to be cognate with an Indonesian or Tetun

form.

Gray et al. (2010) have suggested Q residuals in order to assess the “binary

tree”-like nature of phylogenetic data. Holman et al. (2011) argue (albeit on asjp

data) that the δ score is a better measure of actual language contact events, so

high Q residuals at the same time as low δ scores may be indicative of dialect

chain breakup.

We computed both δ scores and Q residuals for our data using the phyloge-

metric package byGreenhill (2016). The results for theTAP languages are listed

in Table 4. For comparison, the means for the well-studied and more tree-like

Indo-European language family (using data from Chang et al., 2015) and vari-

eties from the Chinese dialect cluster (using data from List et al., 2014) are also

provided. Because of a bug in the software used to compute some of thesemet-

rics as reported in the literature (Greenhill, p.c.), we also re-computed the δ
scores and Q residuals for the two other data sets, instead of referring to litera-

ture values.
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table 4 Q residuals and δ scores for all lects in the

data set used, plus the mean values for Indo-

European (ie) (Chang et al., 2015) and Chinese

(zh) (List et al., 2014) for comparison

Language Q residual δ score

Abui, Atimelang 0.00438 0.238

Abui, Fuimelang 0.00457 0.242

Abui, Petleng 0.00504 0.280

Abui, Takalelang 0.00545 0.249

Abui, Ulaga 0.00644 0.258

Adang, Lawahing 0.00454 0.288

Adang, Otvai 0.00464 0.270

Blagar, Bakalang 0.00401 0.215

Blagar, Bama 0.00421 0.215

Blagar, Kulijahi 0.00395 0.217

Blagar, Manatang 0.00568 0.243

Blagar, Nule 0.00392 0.216

Blagar, Pura 0.00481 0.239

Blagar, Tuntuli 0.00454 0.217

Blagar, Warsalelang 0.00407 0.218

Bunak, Bobonaro 0.00419 0.270

Bunak, Maliana 0.00393 0.282

Bunak, Suai 0.00420 0.270

Deing 0.00468 0.264

Fataluku 0.00367 0.268

Hamap, Moru 0.00525 0.293

Kabola, Monbang 0.00435 0.283

Kaera 0.00798 0.292

Kafoa 0.00663 0.334

Kamang, Atoitaa 0.00358 0.244

Kamang, Suboo-Apui 0.00341 0.235

Kamang, Suubo-Atiibaai 0.00433 0.250

Kamang, Tiyei 0.00422 0.259

Kiraman 0.00447 0.304

Klamu 0.00496 0.298

Klon, Bring 0.00576 0.335

Klon, Hopter 0.00481 0.320

Kui, Labaing 0.00420 0.313
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table 4 Q residuals and δ scores (cont.)

Language Q residual δ score

Kula, Lantoka 0.00369 0.256

Makasae 0.00399 0.281

Oirata 0.00421 0.303

Papuna 0.00420 0.238

Reta, Hula 0.00739 0.259

Reta, Pura 0.00549 0.242

Reta, Ternate 0.00534 0.265

Sar 0.00403 0.238

Sawila 0.00421 0.266

Teiwa, Adiabang 0.00476 0.257

Teiwa, Lebang 0.00583 0.255

Teiwa, Nule 0.00493 0.258

Wersing, Maritaing 0.00374 0.255

Wersing, Taramana 0.00411 0.266

Western Pantar, Tubbe 0.00375 0.300

TAPmean 0.00468 0.264

ie mean 0.00128 0.201

zhmean 0.00462 0.298

The mean Q residuals for AP are three times as high as for Indo-European,

whereas the difference between their respective mean δ scores is quite small.

This suggests that dialect chain formation and break up may be a factor in the

TAP language history.

2.4 Model of language evolution

The basic principle of Bayesian phylogenetic inference is the application of

Bayes’ theorem

P(Tree | Data) = P(Data | Tree) ⋅ P(Tree)
P(Data) (1)

to calculate a posterior probability distribution over all possible language trees.

Trees have a higher posterior probability when they are more compatible with

either (a) the data (that is, trees with a higher likelihood P(Data | Tree)) or (b)
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our knowledge about how language phylogenies look in general (that is, trees

with a higher prior probability P(Tree)). We therefore need to (a) assume a

stochastic model that describes the evolution of cognate classes on any given

tree and (b) specify our prior knowledge about the shape of the Timor-Alor-

Pantar tree.

The stochasticmodel will be evaluatedmanymillions of times, so it needs to

be computationally very simple,while still reflecting the evolutionof the forms,

through theperspective of meaning-annotated cognate classes, aswell as possi-

ble. From a linguistic perspective, wemight expect that, ideally, a cognate class

for a particular meaning should come into existence only once in history, and

every attested instance of such a cognate class should be explainable as derived

from that single origin through inheritance or borrowing. In the phylogenetics

literature, this is known as the Dollo assumption (after Dollo, 1893).

In linguistic reality, however, this idealization does not hold. In addition

to chance similarities and borrowings, as discussed above, there are universal

patterns in lexical semantics (List et al., 2018a; Zalizniak, 2018) and universal

tendencies inhow forms change their lexical semantics over time (Traugott and

Dasher, 2001; Heine and Kuteva, 2005). As a result, it is possible to find formally

relatedwords filling one and the samemeaning slot in different languages, even

though their most recent common ancestor may have used an unrelated form

for that meaning. This effect is known as homoplasy in biology (Jäger and List,

2018).

StochasticDollomodels are computationally intensive, because they cannot

be computed for part of a tree independent of every other part. Combining this

with the effects of imperfections in cognate coding andhomoplasy implies that

stochastic Dollomodels cannot be usefully applied to lexical data inmost cases

(but see Bowern and Atkinson (2012), Michael et al. (2015), and Kolipakam et

al. (2018) for cases where they can be applied).

Besides stochastic Dollo models, several alternative models of cognate class

evolution are used in studies of Bayesian phylogenetics. Here we focus on

binary models that take the presence or absence of a particular cognate class

for ameaning into account. (Where no form is attested for ameaning slot, usu-

ally because the concept list used by the reference does collect that meaning,

the data for all classes in thatmeaning slot is coded as “unknown”.) The options

thus excluded are multistate models, which have several issues due to open-

ing a larger parameter space and unclear procedures for including synonyms,

and binary models acting on the presence/absence of reflexes of a common

root, independent of the meaning of such reflexes. Such models are poten-

tially advantageous (Chousou-Polydouri et al., 2016), but require vastly more

data and manual processing than available for this study.
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figure 5

Possible transitions in the binary covar-

ion model of cognate evolution with their

parameterized transition rates. Letters in

parentheses mark the transitions discussed

in the text

In this remaining class of binary models, we consider the general binary

model and the binary covarionmodel. In bothmodels, the presence or absence

of every cognate class-meaning pair is assumed to evolve independently. In the

general binarymodel, jumps between presence and absence of cognate classes

occur randomly with fixed rates.

The binary covarion model allows the eight transitions shown in Fig. 5,

with rates parameterized as shown. A particular pair of a cognate class and

a meaning may originally have been present but have been lost over time, or

it may have been originally absent but innovated. Like in the general binary

model, such transitions between a cognate class-meaning pair being present

and absent are possible directly. However, this happens at a very low (“cold”)

rate; see transitions A and B in Fig. 5. In addition, a second “hot” path allows

the transition via two much more transient intermediary states. The hot/cold

metaphor here comes frommodels of physical processes, where increasing the

temperature de-stabilizes a system (e.g., melting, de-magnetizing); the covar-

ionmodel’s “cold absent” and “cold present” states are each very stable,whereas

transitionsbetween “hot absent” and “hotpresent” canbe relatively fast and fre-

quent. Studies comparing different binary models with cognate class-meaning

data have found that in most cases (Gray et al., 2009; Lee and Hasegawa, 2011;

Kolipakam et al., 2018) the best performing model is a binary covarion one.

Sometimes, though, it has been found that binary covarion performs second-

best after a Dollo model (e.g., Bowern and Atkinson, 2012). The general binary

model has generally been found to be outperformed by both these models.

We test the simpler general binary model to generate a baseline, compare it

with the binary covarionmodel, and use the better fittingmodel in subsequent

model comparisons.
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A simplified example from our data to illustrate some of the transitions in

Fig. 5 would be the following. The proto-TAP form *lamV ‘walk’ was inherited

in proto-AP as *lam(ar), and amodern reflex of it is Klon lam ‘walk’. Teiwa also

has a word lam, but it has shifted its meaning to ‘follow (a path/river)’, and the

word tewar is now the word used for ‘walk’. Thus, the pair ⟨*lam(ar)-‘walk’⟩

did not undergo a transition in Klon, but it has become absent in Teiwa, thus

changing from “cold present” to “cold absent” (i.e., transition B in Fig. 5).

However, the model does not only account for transitions between (cold)

present and (cold) absent at a very low rate; it also contains the two transi-

tory states “hot present” and “hot absent”. Applied to our example, the pair

⟨*lam(ar)-‘walk’⟩ would go from “cold present” to “hot present” (Fig. 5, C) in

a language when the word is still in use but speakers also start to use another

word as an alternative or synonym for it. If over time, this synonym replaces the

⟨*lam(ar)-‘walk’⟩ form, the latter will fall into disuse and will only be known

by some (older) speakers as the archaic form for ‘walk’. This change would

illustrate a transition from “hot present” to “hot absent” (Fig. 5, D). The next

stagemight be that theword completely disappears, thus switching to the “cold

absent” state (Fig. 5, E). Transitions between the intermediate states of “hot

present” and “hot absent” are assumed to occur at a much higher rate than any

of the other transitions. So, the most likely path for the loss of a cognate class

does not go from “cold present” to “cold absent” but from “cold present” to “hot

present” to “hot absent” to “cold absent”. Similarly the most likely path for an

innovation would not be to simply go from “cold absent” to “cold present” but

first tobecome “hot absent” (e.g., an innovativeword introducedbya fewspeak-

ers), then “hot present” (thenewwordused in variationwith the existingword),

and then become “cold present”. In the model, the switches between “hot” and

“cold” states can reflect different speeds of evolution of cognate class-meaning

pairs in different parts of the tree.

The technical details are as follows. The transition rates are chosen such

that the marginal probability to be in a “present” state is π1 and the equi-

librium probability for “absent” is π0 = 1 − π1. The vertical transition rates

between hot and cold states are balanced such that the system is expected

to be “hot” and “cold” each half of the time. The switch rate s is inferred

using a Γ prior with parameters α = 0.05 and β = 10, the slower rate α is

distributed uniformly between 10−4 and 1, and the underlying present/absent

frequencies π0 and π1 are inferred assuming a flat Dirichlet prior. Rates are nor-

malised to an expected 1 present/absent switch per time unit, and re-scaled

with the log-normally distributed clock rate, and a Γ-distributed rate for each

cognate set. This Γ rate variation reflects that not all concepts change forms

at equal speeds; instead, the replacement speeds between different concepts
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vary widely (Greenhill et al., 2010, 2017; Chang et al., 2015). Efficient algo-

rithms for per-site (i.e., per-cognate set) rate variation are available, while per-

concept rate variation is computationally more intensive, so we use per-site

variation.

2.5 Tree prior, clocks, and calibrations

In addition to deciding on the evolutionary model, we also need to specify our

prior knowledge of the TAP tree. One type of prior knowledge involves the rate

in which languages split from their immediate ancestor. A uniform tree prior

assumes that the internal nodes of the tree have ages that are uniformly dis-

tributed between the tips and the root of the tree (i.e., that we have absolutely

no prior information on the age of any subgroups). The advantage of such a

prior is that it is computationally very simple, but the disadvantage is that it

does not have any basis in how languages evolve in reality (Barido-Sottani et

al., 2018; du Plessis, 2018). In addition, a uniform tree prior may bias the infer-

ence procedure towards more extreme clade probabilities (Yang and Rannala,

2005): a subgrouping that is compatible with the data, but at low probability,

may be suppressed and not show up in the posterior sample.

In biology, a well-established prior on trees is the coalescent tree prior. It

describes the possible ancestries of two genes in a large mixing population:

tracing the gene back in the family tree of different individuals from the popu-

lation, when do the ancestries of the gene coalesce to a single gene in a single

ancestor? Due to the assumption of a large, mixing population, this tree prior

does not appear particularly suited to our data.

A third type of tree prior is the fossilized birth-death (fbd) prior, which

assumes that languages split from their ancestor at a constant birth rate, and go

extinct at a different, but also constant, death rate, while leaving fossils behind

to the present day with a low chance. (This chance is 0 for our data, which does

not contain independent evidence for historical languages.)

Rama (2018) has compared the uniform, coalescent, and fbd priors on Indo-

European data, and found that the the trees inferred using the fbd prior

and the uniform prior both closely match the traditionally established Indo-

European tree, while the coalescent prior performsmuch worse. He concludes

that “any future phylogenetic experiment should test uniform tree prior as a

baseline before testing more parameter-rich priors such as fbd or Coalescent

priors” (Rama, 2018: 10; emphasis in original). In our analysis, we thus test both

the fbd and the uniform tree prior.

Ourprior knowledge about theTAP tree also contains information about the

fact that certain subgroups split, and about times when that happened. While

dating thenodes in the tree is not our primary goal here, it is known that includ-
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ingmultiple calibrationdates in a tree can influence its topology, that is, change

its subgrouping. We therefore include the following calibrations.

The migration of speakers of the ancestors of today’s Oirata speakers from

east Timor to the adjacent island of Kisar—that is, the date when Oirata split

from its relativesMakasae andFataluku—canbedatedwith high confidence to

the year 1721 or shortly before that (Hägerdal, 2012: 337).We therefore include a

normally distributed calibration on the split that is directly ancestral to Oirata

in all our inferences with 95% probability (2σ) on the seven years up to 1721, a

distribution with mean age 282.5 years and standard deviation 1.75 years.

Calibration dates for other splits in the tree are based on circumstantial evi-

dence. One observation that has been made is that the level of (lexical and)

grammatical similarity within the AP sub-branch does not support an age of

more than a few millennia (Klamer, 2017: 10). The reconstructed vocabulary

of proto-AP appears to contain Austronesian (Malayo-Polynesian, MP) loan-

words such as proto-AP *baj ‘pig’, cf. proto-MP *babuy; and proto-AP *bui

‘betelnut’, cf. proto-MP *buaq ‘fruit’ (Holton et al., 2012). These ancient MP

loans are found across the Alor-Pantar branch, and they follow regular sound

changes, which indicates that they were borrowed at the level of proto-AP.We

use them to approximately date when proto-AP split from proto-TAP. Proto-

MP has been dated at 4,000 yBP (Pawley, 2002), and speakers of MP languages

are commonly assumed to have arrived in the Timor Alor Pantar area around

3,000 yBP (Pawley, 2005; Spriggs, 2011). The MP borrowings in proto-AP would

thus give the AP family a maximum age of around 3,000 years.

More precisely, human genetic studies support a connection between popu-

lations of the Lesser Sundas with Papuan populations of NewGuinea and Aus-

tronesians (Malayo-Polynesians) from Asia (Lansing et al., 2011; Xu et al., 2012).

The admixture between Papuan and (“Melanesian”-)Asian is estimated to have

begun about 5,000 yBP in the western part of eastern Indonesia, decreasing to

3,000 yBP in the eastern part. This associates the Papuan-Asian admixturewith

Austronesian (MP) expansion (Xu et al., 2012). This is the only date range with

quantitative confidence, and gives the confidence interval used in our analy-

sis. The 90% confidence interval between 2,870 and 3,405 yBP corresponds to

a normal distribution with mean 3,137.5 yBP, and a standard deviation of 162.6

years.2 The dating is thus consistent with the scarce linguistic and archaeolog-

ical evidence for the contact time frame around 3,000–3,500 yBP.

2 The discrepancy between using a calibration given in yBP, thus relative to the year 1950, and

the Oirata calibration and tip dates using the year 2000 as reference points was pointed out

in late in the review process. The relative error of this calibration is well below 2%, and the

difference of 50 years would be easily absorbed by the standard deviation of 162.5 years if the

data were extremely informative.



294 kaiping and klamer

Language Dynamics and Change 12 (2022) 274–326

Unlike proto-AP, proto-TAP does not have any reconstructible MP borrow-

ings. There are significant lexical and grammatical differences between the

languages of the AP branch and those of Timor (Holton et al., 2012: 115, and

references cited there), suggesting a long period of separation for the branches.

This is unsuitable for deriving calibrations, but for the technical reason to guar-

antee a proper prior on the tree—even for the uniform tree priorwith very little

data—we assume that the age of the root is less than 18,000 years (using a uni-

form prior).

As such, our data permits only two actual calibration points. We therefore

expect that we do not have sufficient data to distinguish between a strict clock,

which implies the speed of evolution to be the same throughout thewhole tree,

and a relaxed clock, which allows the rate of evolution to vary between differ-

ent parts of the tree by assigning a different relative rate of evolution to each

branch in the tree.

However, as with the previous model choices, we first implement the sim-

pler choice (the strict clock) and then compare it to the more elaborate and

potentiallymore realisticmodel (the relaxed clock), and keep the better one for

our conclusive analysis. Our relaxed clock uses a log-normal distribution with

mean 1 for its per-branch clock rates, and the σ of the log-normal distribution

is drawn using from an improper [0, ∞) uniform prior (starting at σ = 0.2), to
allow the data to inform us how clock-like the evolution is.

2.6 Inference procedure usingmcmc

The prior, the likelihood, and the data together are in theory sufficient to know

theposterior distributionof trees compatiblewith thedata.There are, however,

2.98744 × 1072 different tree topologies for our 48TAP languages, andonly a very

small proportion of these have any relevant posterior probability. The number

of trees is so immense that to compute them all is impossible. To avoid this, we

resort to the Markov chain Monte Carlo (mcmc) sampling method and make

use of the fact that similar trees have somewhat similar probabilities. Instead

of drawing trees entirely at random and calculating their probabilities (a pro-

cess known asMonte Carlo sampling), the mcmc samplingmethod constructs

a random walk through the space of trees. It has a memory of one previous

state (which is the characteristic property of a Markov chain) and uses small

random modifications, such as swapping two sub-trees, to explore the search

space of all trees in a more structured manner. If the modification leads to a

more probable tree, the algorithm accepts it and takes it as its new state. If the

posterior probability of the new state is worse than the posterior probability of

the old state, there is still a chance that the algorithmwill accept it andmove to

it, otherwise it is rejected, and a different change away from the same original
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location is tried. Trees that are in the statemore often are thus exactly themore

probable trees. The rejection probability is calculated such that by tracking the

state of the chain at regular intervals, we derive a sample of trees that reflects

the posterior probability distribution.

The beast2 software package, in its version 2.6.4 (Bouckaert et al., 2014;

Drummond and Bouckaert, 2015; Bouckaert, 2018a), provides an extensible

implementation of mcmc for tree inferences.

We run each inference in four independent chains in chunks of 22:00 hours

on a dedicated computing cluster,3 logging results every 5,000 steps to avoid

a high correlation between subsequent samples. The first samples reflect the

starting point of the analysis and not its posterior distribution, so we discard

the first 10% of samples, and we check using Tracer 1.7.1 (Rambaut et al., 2020,

2018) whether the chain appears to have converged and whether the resulting

samples are dissimilar enough from each other to reflect an effective sample

size of at least 200, for every parameter sampled. If that is not the case, we

resume the chain from its last state. The run time, depending on the model

complexity, may thus range from about a day to a week.

Marginal likelihood values are calculated in each case using path sampling

analysis from the beast2 package model-selection. We run the stepping

stone analysis with 100 steps, where we choose the internal chain length of

each step such that the total number of samples from the stepping stone anal-

ysis is greater than the sample size of the converged posterior chains. In step

0 of the stepping stone analysis, the likelihood has full weight, while the other

steps interpolate between posterior and prior by decreasing the weight of the

likelihood. In order to avoid problems with burn-in and lack of convergence

in the initial stepping stone step, we start the path sampling analysis from the

final state of the first of our four independent mcmc chains.

2.7 Summary of model choices

To summarize, our starting analysis (S) uses LexiRumah TAP data in a compa-

rable format and with clean meaning-formmapping; the data is automatically

cognate-coded using LexStat to obtain similarity scores between forms, from

which disjoint cognate classes are generated by running the Infomap clustering

algorithm on the graph of all pairs of forms with a distance less than θ = 0.55.
We treat all forms that appear to be cognatewith Indonesian or Tetun as recent

loans and exclude them from our data set. We infer trees from this data set

3 https://docs.s3it.uzh.ch/cluster/quick_start/. The beagle library for beast was compiled

without gpu support, so the chains were run for 88:00 cpu hours at a time.

https://docs.s3it.uzh.ch/cluster/quick_start/
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(using beast2 for mcmc sampling) by means of Bayesian phylogenetic infer-

ence, with a general binary model with Γ rate variation between different cog-

nate sets and trees following a birth-death tree prior, calibrated using a strict

clock at the ancestors of Oirata (282.5 ± 1.75 yBP), the ancestor of all AP lan-

guages (3137.5 ± 162.6 yBP) and the TAP root (younger than 18,000 yBP). The

only monophyly constraint in the analysis is on the Alor-Pantar languages as a

whole, mandated by the calibration on that branch.

We then compare marginal model likelihoods, estimated using stepping

stone analysis from the model-selection package for beast2 (Bouckaert,

2018b), to see whether the fit of the model is improved by:

1. Replacing the strict clock with an uncorrelated relaxed clock

2. Replacing the binary substitution model with a binary covarion substitu-

tion model

3. Replacing the birth-death tree prior with a uniform tree prior.

We test all combinations of two of these variants, and test the combination of

all three variants if any variant improves upon the starting model. (That is, a

variant needs to underperform twice to be rejected.) We check the robustness

of the results from the best model by testing different cognate codingmethods

(S compared with D1–D4).

3 Results

All configurations and results of the phylogenetic inferences are available in

the supplementary material.

3.1 Model selection

Even after running several chains with optimized operators (Douglas et al.,

2021) and Metropolis-coupling (Müller and Bouckaert, 2019; Altekar et al.,

2004) for 200 million steps in total, the relaxed clock variant (C) persistently

showed bad mixing between what appeared to be two likelihood regimes. The

results of combining the relaxed clock with any other modification (MC, TC)

did not seem to show improved convergence. It would thus be difficult to assess

the quality of the mcmc even if the summary statistics suggested convergence

(Brown and Thomson, 2018). The log files of these unconverged chains can

be found in the supplementary material. Because the chains consistently find

these two regimes and are able to jump between them, and no other likelihood

regimes show up, there is very weak indication that properties shared between

both regimesmight be indicative of the posterior space. Of interest in this con-

text is the variability of the per-branch clock rates, which constitutes the main
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difference between the relaxed clock and the strict clock. In the regime with

higher clock variance, the standard deviation in log space of the clock rate

has a mean of 0.935 with a maximum 1.4337. Ninety-five percent of the sam-

ples (thus likely also a high probability mass in the converged posterior) of the

coefficient of variation for the relaxed clock lie between 0.7 and 1.6. Such num-

bers would suggests that the relaxed clock, if it could be trusted, would be a

better fit than the strict clock, but the phylogenetic signal is indeedmore clock-

like than non-clock-like (Drummond and Bouckaert, 2015: 144). Because of the

lack of convergence,we therefore consider only the strict clock in our following

results, instead of comparing it to the relaxed clock or resorting tomodelswith-

out clock, and caution against giving interpretative weight to the node ages we

infer.

The remaining four models (S, M, T, and MT) show apparent convergence

for all parameters, with the longest run having 40 million mcmc steps, so we

choose 100million steps for the sumof chain lengths formodel selection. Using

beast2’s model-selection 1.4.0 package (Bouckaert, 2018b), we ran a step-

ping stone analysis (Xie et al., 2011; Lartillot and Philippe, 2006) with 100 steps

for each analysis, each running for onemillion internal steps. Thismethod esti-

mates themarginal likelihood of amodel, or, equivalently, the evidence in favor

of that model. The marginal likelihoods of our analyses are summarized in

Table 5. Surprisingly, the starting model (S) has a higher model likelihood than

all the available variantmodels (M, T, andMT). For the path sampling analyses,

the Path Sample Analyser tool accompanying beast2’s model-selection

add-on reports effective aggregated sample sizes between 14,078 (MT) and

28,698 (S).

3.2 Posterior tree sample

The tree sample from our mcmc S is summarized in Fig. 6. Themean root ages

for the four topologies all lie between 5,979 and 6,089 yBP. Of all trees in this

posterior sample, 95% have root ages between 4,816 and 7,636 years.

Visualizations of all other posterior samples can be found in Appendix B.

Themost deviating tree samples come from the extreme cognate codingmeth-

ods (D2, and even more so D3). The standard cognate coding methods (S, D1,

D4) are overall very similar, despite the differences in sound classes and coding

procedure, respectively.
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table 5 Estimated marginal log-likelihood of the different analyses.

A higher marginal log-likelihood implies that the data is evi-

dence in favor of that model. The Δ values are the logarithmic

Bayes factors in favor of the best model

Analysis Marg. log-lk Δ to best

S –49315

T –49342 –27

M –56944 –7629

C Did not converge

MT –57431 –8116

MC Did not converge

TC Rejected due to previous convergence issues

X Rejected as per a priori model selection decision

4 Discussion

In our results, we found that a standard model outperforms the alternatives in

terms of marginal likelihood. This is surprising and not reflected in the litera-

ture on linguistic phylogenies, where the uniform tree prior had been found

to compete with the more mechanistic birth-death tree prior (Rama, 2018),

and the binary covarion model usually greatly outperforms the simpler binary

Markov chain model (Gray et al., 2009; Kolipakam et al., 2018).

We showed that rough cognate coding can greatly influence the higher-

order splits inferred, by lumping forms that are likely unrelated, or splitting

cognate sets that do indicate relatedness. However, using up-to-date cognate

coding methodology with proper parameter values, optimized on other lan-

guage families, gives reliable tree estimates independent of the specific coding

choice.

Our analysis shows a very strong signal of subgrouping of the Timor-Alor-

Pantar family. It shows an early split of East Alor, and the remaining Nuclear

AP group splits into Central Alor (with Abui, Kamang, Kui, Kiraman, and

probably Kafoa) and West Alor-Straits-Pantar (WASP), with the latter split-

ting into West Alor (Hamap, Kabola, Adang, and maybe Kafoa), and a Pantar-

Straits group. Whether Klon is part of the West Alor clade or a first-order

member of WASP is unclear. The Pantar-Straits group clearly shows a split

between the languages of the Straits (Blagar, Pura, and Reta) plus Kaera ver-

sus Western Pantar versus the Pantar languages (Klamu, Teiwa, Deing, and

Sar).
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figure 6 Summary of the posterior tree sample S (general binary model, strict clock, birth-

death tree prior), showing all topologies with at least 5% support, with darkness

proportional to support (45%, 22%, 13%, and 6%, respectively). The age of each

node is its mean age in that topology. The order of lects, from top to bottom,

roughly follows the locations of languages from east (Timor) to west (Pantar).

In the following, wewill consider the specific findings fromour analysis con-

cerning the internal structure of theTimor-Alor-Pantar languages in light of the

linguistic evidence for the different subgroupings suggested in earlier work.

The differences between Robinson and Holton (2012a) and our core analy-

sis S are due to both the quantity and quality of the data as well as the chosen

methodology. Amajor difference is that the tree in Fig. 3was improperly rooted,

using a reconstructed proto-Alor-Pantar lexicon as outgroup. This aggravated
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biases already present in the rather scarce data set. In addition to this rooting

issue, the differences largely affect the affiliationof thePantar languages,which

also proved difficult to classify in Holton et al. (2012), and continue to resist a

clear binary classification.

The traditional linguistic evidence for a tree of AP languages is given in

Holton et al. (2012), which describes systematic phonological innovations in

12 AP languages (see Fig. 2). This tree is also the one represented in Glottolog

(Hammarström et al., 2020). It has the East Alor languages all fairly deeply

embedded in the tree and shows relatively little resolution and no delineation

of a Pantar subgroup, so that all Pantar languages are considered as primary

split-offs from proto-AP. East Pantar is thus suggested as the location of origin

and original break-up of the AP family (Holton et al., 2012: 118).

There are thus twomajor differences between our analysis and earlier topol-

ogies: (a) in our topology the languages of East Alor are a high-level subgroup

where they were previously considered to be embedded deeply in the tree; and

(b) in our topology the languages of Pantar are a low-level subgroup inside

WASP, where previously they were considered first-order members of AP (see

Figs. Fig. 2 and Fig. 3).

The differences between our analysis and this earlier application of the clas-

sic comparative method by Holton et al. (2012) may be due to the paucity of

TAP language data at the time (short word lists of only 12 lects), as well as the

methodology of manual comparison.

The early East Alor split we observed in our analysis is supported by regular

innovations, of which we will mention three (there may bemore). First, proto-

Nuclear Alor-Pantar saw a lexical innovation, adding a lexeme *-om ‘inside’ to

the expression used for ‘(be) inside’, while proto-East Alor retained the origi-

nal form reflecting proto-TAP *mi ‘be in, at’; this is also found in reconstruc-

tions for the Timor branches (Klamer, 2018), as seen in Appendix C.1. There

are also two phonological innovations that support the split. Proto-TAP inter-

vocalic *d changed into a liquid *r in proto-Nuclear AP, but was retained in

proto-East Alor; see Appendix C.2, where this is illustrated for proto-TAP *hada

‘fire’. Other cognate classes showing this pattern are ‘sugarcane’, ‘tongue’, and

‘new’; see the data in Kaiping et al. (2019b). The opposite pattern of inno-

vation cum retention is found for proto-TAP intervocalic *b. This obstruent

became voiceless *p in proto-East Alor but was retained in proto-Nuclear AP;

see Appendix C.3, where this is illustrated for proto-TAP *habi ‘fish’. Other cog-

nate classes showing this pattern are ‘bat’ and ‘sun’; see the data in Kaiping et

al. (2019b).

The early split-off of East Alor is thus conceivable from the perspective of

historical linguistics, even though the systematic sound changes do not give
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table 6 Sound changes in Alor-Pantar languages observed by Holton et al. (2012: 113)

Sound changes Languages

*b > f Teiwa, Klamu, Abui (in Teiwa and Klamu only non-initially)

*b > p Kamang, Sawila, Wersing (in Kamang not medially)

*d > r Abui, Kui (in Kui only finally)

*g > ʔ Blagar, Adang

*k > ∅ Blagar, Adang

*q > k W Pantar, Blagar, Adang, Klon, Kui, Abui, Kamang, Sawila,

Wersing (Adang ʔ < k < *q)

*s > h Blagar, Adang, Klon

*s > t Abui, Sawila, Wersing

*h > ∅ everywhere but Teiwa andW Pantar

*m > ŋ / _# W Pantar, Blagar, Adang

*n > ŋ / _# Klamu, Kaera, W Pantar, Blagar, Adang, Abui, Kamang, Saw-

ila, Wersing

*l > i / _# Teiwa, Kaera, Adang, Kamang

*l > ∅ / _# Klamu,W Pantar, Abui

*r > l / V_V Klamu,W Pantar, Adang, Kamang

*r > i / _# Blagar, Kui, Abui

unanimous evidence for it (see Table 6). The discrepancy between lexical and

phonological changes could be explained by long-lasting and intensive lan-

guage contact between neighboring communities. In that case, forms that are

borrowed might look superficially similar without showing the exact regu-

lar sound correspondences dividing East Alor from Nuclear AP languages. As

such, they would be grouped together only under a high cognacy threshold

θ.
In fact, our analysis D3 (see Appendix B.1, Fig. 12) produces a posterior sam-

ple where the East Alor languages are a clear clade embedded deep in the Alor-

Pantar tree, but the overall topology of AP is very uncertain. This corroborates

the hypothesis that long-lasting contact with the Central Alor languagesmasks

the signal of an early split between East Alor and Nuclear Alor-Pantar. Phylo-

genetic network models which explicitly take borrowing into account may be

used to assess this hypothesis once they become tested and feasible for large

data sets such as ours: we expect that forms grouped together under a higher

threshold θwill not be purely noise that decreasesmodel likelihood, but in part

confirm lateral connections inferred also for a lower θ.
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Early split-offs are often taken to reflect the greatest age, so that the loca-

tion of such a split may point to an area where the proto-language began to

diversify; compare Sapir’s “centre of gravity principle” (Sapir, 1916: 79–80). An

early East Alor primary subgroup of AP may suggest that the proto-AP speak-

ers first arrived on the (south)eastern coast of Alor and then spread westwards

over the course of subsequent centuries. This scenario contrasts with earlier

proposals where the homeland of AP was hypothesized to be on Pantar, with a

subsequent direction of movement of the languages fromwest to east (Holton

et al., 2012); orwhere the homelandwas on an island in the Straits betweenAlor

and Pantar (Robinson and Holton, 2012b: 143), with languages moving west to

Pantar and east to Alor. A phylogeographic inference, which takes the cultural

adaptation necessary to move between different biomes (e.g., from coast to

mountains) into account, may be able to give deeper insight into themigration

history of the region, in particular if it was informing and informed by language

contact in a network phylogeny.

Checking the defining phonological changes against our current data set,

we find that the most widespread of these changes is the one involving the

uvular stop /q/. Although a uvular stop is found in only a few of the modern

languages, the reconstruction of pAP *q is supported by a number of corre-

spondence sets (Holton et al., 2012: 102–103; Holton and Robinson, 2017: 52).

The sound change *q > k occurs in all languages of Alor and the Straits, but not

in the Pantar languages. (The few existing irregularities may be explained by

diffusion.) Cognate sets showing this regular change are ‘spear’, ‘ten’, and ‘two’.

This change results in a merger of *k and *q in virtually all of the languages

of Alor and the Straits (Holton et al., 2012: 113) and is therefore incompati-

ble with both major topologies found in our lexical data set: the first-order

split of East Alor languages and the low-level grouping of the Pantar lan-

guages.

The sound change *s > h (in initial position of ‘chicken’ and final position

of ‘mat’) is evidence for an innovation-defined subgroup that includes the lan-

guages of West Alor and Straits (Holton et al., 2012: 113), namely Adang, Hamap,

Kafoa, Klon, andBlagar. Additional innovations uniting this group are the inno-

vation of a unique (subtractive) morphological shape for the numerals ‘seven’,

‘eight’, and ‘nine’ (Schapper and Klamer, 2017: 292–294) and the West Alor-

Straits lexical innovation *dol ‘mountain’, where proto-AP has *buku. This set

of changes may be seen as further evidence that the lexical tree shown in Fig.

6, which does not groupWest Alor with Straits excluding Pantar, is not reflect-

ing all elements of the complex history of the TAP languages. Note also that

there are two languages in Fig. 6 that are not monophyletic, namely Adang,

with Kabola and Hamap; and Teiwa, with Sar. This shows that even today, the
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figure 7 Subgrouping structure of the TAP language family

patterns of linguistic signal intersect non-trivially with speakers’ perceptions

of which other lects belong to their dialect chain.

We speculate that the low performance of the uniform tree prior (compared

with our expectation, set byRama, 2018) is also related: followingYang andRan-

nala (2005), the long branch lengths of the uniform tree prior favor extreme

clade probabilities, so the posterior tree distribution under the uniform prior

(T, MT) is unable to account for the highly conflicting signal in the data.

The conflicting subgrouping evidence in the earlier literature and the dif-

ferent tree structures discussed here may point to a historical scenario where

proto-Alor-Pantar split into proto-Nuclear Alor-Pantar and proto-East Alor.

Proto-Nuclear Alor-Pantar likely formed a dialect chain (linkage), allowing

overlaps in lexical material and sound changes, and innovations shared by

neighboring languages. It then broke up into proto-Central Alor and proto-

WASP.The contact between the initiallymutually understandable neighboring

dialects of proto-NuclearAlor-Pantar persistedwhile the linkage developed the

less porous boundaries of today’s Alor-Pantar languages. The tree correspond-

ing to this synthesis shown in Fig. 7.

The hypothesis that the history of the Alor-Pantar languages may have

involved a dialect chain that broke up is supported by evidence for regional

networks of trade andmarriage between the various speech communities. Net-
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works that have been reported include alliances between groups on west Alor

(Adang, Kabola, Kui) and the Straits (Blagar) (Wellfelt, 2016: 228, 277), con-

nections between coastal people and people in the interior of east Alor (e.g.,

Wellfelt, 2016: 73), connections between people in central Alor and south Alor

(Wellfelt, 2016: 177), and connections between groups in east Alor and east

Timor (Wellfelt, 2016: 99). Regional networks like these must have also shaped

the linguistic landscape.

5 Conclusions

In conclusion, our analysis indicates the subgrouping structure of the Timor-

Alor-Pantar language family is that shown in Fig. 7.

The major features of this tree are consistently inferred using various state-

of-the-art methods of cognate detection and tree inference. The newly found

early split of the Alor-Pantar branch into an East Alor subgroup and a Nuclear

Alor-Pantar subgroup robustly appears from all our sensible inferences (all

models, and all non-extreme coding procedures). This early split is supported

by lexical and phonological innovations. It suggests that the Alor-Pantar speak-

ers arrived in the east of Alor, followed by a subsequent westward movement

of the languages.

However, our findings also indicate that proto-AP consisted of a chain of

related dialects, and the history of most AP languages is characterized by high

levels of mutual interaction andmobility.We speculate that this situation arose

either because different bands of proto-AP speakers arrived around the same

time and settled in different locations in or around the Straits; or because bands

of proto-AP speakers left a single original point of arrival relatively shortly after

they had arrived, but stayed in contact afterwards; or a combination of these

two. A similar dispersal scenario has been proposed for Alorese, an Austrone-

sian language that arrived in the Straits around ad1300–1400 with speakers

that had various different settlements on both Pantar and west Alor (Klamer,

2011: 10–12).

We also found that computational accounts which assume a binary tree

model lead to an inaccurate historical picture, due to the lack of models that

explicitly deal with dialect chain data. This is why we made an effort to check

the adequacy of the different models against each other, and to tie the derived

phylogenies back to the linguistic evidence regarding the phonological and lex-

ical innovations in the languages investigated.While computationalmodels for

punctuated contact events are slowly becoming feasible (Kelly, 2017; Vaughan

et al., 2017; Zhang et al., 2018), none of them are available for the inference of
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large-scale language contact, and inference procedures that take into account

theoverlapping isoglosses fromdialect chains (François, 2014; KalyanandFran-

çois, 2018) have not been proposed.
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Appendix A: The procedure of automatic cognate detection

Automatic cognate detection (acd) algorithms calculate a score of formal simi-

larity or “cognate-ness” for eachpair of word forms that have the samemeaning.

The currentlymost established type of scoring functions converts the phonetic

or phonemic transcriptions of forms into broader sound classes, aligns them

and calculates a distance score based on that alignment. (Promising new scor-

ing functions have been suggested (Jäger and Sofroniev, 2016; Jäger et al., 2017),

but they are not yet practically available.)Herewedescribe LexStat (List, 2012a)

and OnlinePMI Rama et al. (2017), which have both shown good performance

(List et al., 2017; Rama et al., 2017).

LexStat is easily available in the LingPy software package for historical lin-

guistics (List et al., 2018b). It requires at least 100 shared concepts for each pair

of languages to work well (List, 2014).

In order to reduce the complexity and therefore the number of parameters

it needs to estimate, LexStat does not operate directly on the ipa-transcribed

forms, but instead uses transcriptions that follow a sound class model that

groups similar sounds together into a small number of classes. The sca (List,

2012b) sound class model has been established as useful for automatic cognate

detection, but the asjp sound classes from the Automated Similarity Judg-

ment Program database (Wichmann et al., 2016) might be a useful alterna-

tive.

LexStat (List, 2012a) first groups together very similar forms that express the

same concept across different languages. Then it calculates systematic sound

correspondences by using these very similar forms to bootstrap a table of

scores for systematic soundcorrespondencebetweeneachpair of languages.To

account for random similarities, these scores are normalized against random

correspondences obtained from comparing the words for random concepts in

the word lists. The cognate-ness distance of two forms can then be thought

of as the effective number of changes (discounting systematic sound changes

and over-counting unexpected correspondences, as derived from the bootstrap

step) to transform one form into the other, normalized by the chance for ran-

dom similarities and the length of the forms.

Where LexStat uses three passes over the whole data set to find systematic

sound correspondences in the data, OnlinePMI updates its similarity scores

continuously (“online” in machine learning jargon) by going through the

data set in small batches and adapting the scores used for future alignments

after each such batch. It uses a statistical measure for the co-occurrence of

sound segments known as “pointwise mutual information” to generate these

scores.
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figure 8 Network of cognate-ness for the forms meaning ‘sacrifice’, calculated using LexStat with the

sca sound class model. Thicker, darker lines represent a smaller inferred distance between

forms. Different colors of the forms indicate different inferred cognate sets (see Table 7).

Computing these similarity scores using either method gives rise to a net-

work, in which the connections between the forms (“edges” in the graph liter-

ature) are “shorter” (representing a stronger connection) for similar forms and

“longer” (representing weaker connection) for different forms. Fig. 8 shows the

resulting network for the forms in our dataset meaning ‘sacrifice’. Note that the

length of the connections in the figure is only an approximation of the calcu-

lated distances, made necessary by embedding the graph in a two-dimensional

plane. The actual value for the cognate-ness distance is instead reflected in the

color and thickness of the lines.

A second part of the algorithm then tries to find clusters in this weighted

network. That is, it tries to find non-overlapping sets of forms that all have a

short distance to each other, but have a long cognate-ness distance to words

outside the set. Infomap (Rosvall and Bergstrom, 2008) is a graph community

detection algorithm which has been shown to outperform other methods for

cognate class clustering (List et al., 2017). As described in Section 2.2, we cluster

forms into cognate classes using Infomap on unweighted graphs based on dif-

ferent distance thresholds θ. The resulting cognate classes can be represented

in tabular format like Table 7. The results of the clusters for the forms in our

dataset meaning ‘sacrifice’ for the more lumping θ = 0.75 and the more split-

ting θ = 0.35 can be seen in Fig. 9.
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figure 9a

θ = 0.35
figure 9b

θ = 0.75

figure 9 Networks of cognate-ness for the forms meaning ‘sacrifice’, calculated using LexStat with the

sca sound class model, clustered using Infomap with different thresholds θ. The forms are the

same as those in Fig. 8.

table 7 Results of automatic cognate detection on the forms meaning ‘sacrifice’, for the

networks shown in Figs. 8, 9a and 9b

Language Form θ = 0.55 θ = 0.35 θ = 0.75

Abui-Takalelang dei̞.ˈpuŋ 1 1 1

Abui-Takalelang dei̞.ˈpü 1 1 1

Abui-Ulaga mini 2 2 2

Blagar-Manatang pemberiaŋ 3 3 3

Blagar-Pura ameaŋ 4 4 4

Bunak-Bobonaro kasaʔ gumɛ 5 5 5

Bunak-Bobonaro kasaʔ gɔrɔ 5 6 5

Bunak-Suai kasaʔ gumɛ 5 5 5

Bunak-Suai kasaʔ gɔrɔ 5 6 5

Fataluku kuˈlupa 6 7 6

Kaera-Abangiwang goŋ ˈwaŋ samuŋ 7 8 7

Klon-Hopter gɔˈluk gɔˈhɔl 8 9 5

Kula-Lantoka ˈgwajam ˈpajam 9 10 8

Makasae kuluˈbaː 6 7 6

Reta-Hula toː-mamoː-liŋ 10 11 9

Reta-Hula ma gɛnaŋ 11 12 10

Reta-Hula sadaka 12 13 11

Reta-Pura sadaka 12 13 11

Sawila pəmbəˈrian 13 14 3

Teiwa-Lebang ˈderma 14 15 12

Teiwa-Lebang ˈsembahan 15 16 13
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table 7 Results of automatic cognate detection on the forms meaning ‘sacrifice’ (cont.)

Language Form θ = 0.55 θ = 0.35 θ = 0.75

Wersing-Maritaing kɔrban 16 17 6

Indonesian korban 16 18 6

Tetun-Suai hasae 17 19 14

Appendix B: Posterior tree samples

In the following, we show the posterior tree samples derived from alternative

data coding methods, and for the models that were rejected because they had

lower marginal likelihood.

B.1 Different data coding

In Figs. 10 to 13 we present DensiTree visualizations of the posterior tree sam-

ples from thebestmodel, S, under differentways to automatically cognate-code

the data. The order of lects is the same as in Fig. 6, and top to bottom roughly

follows the locations of languages from east (Timor) to west (Pantar). The lan-

guages are given by their internal ids according to LexiRumah.

B.2 Lowermodel likelihood

This section contains DensiTree visualizations of the posterior tree samples

from the convergent models considered in the model selection, which were

rejected due to lower model likelihood, in Figs. 14 to 16. Again, the order of

lects is the same as in Fig. 6, and top to bottom roughly follows the locations of

languages from east (Timor) to west (Pantar) and languages are given by their

internal ids according to LexiRumah.
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figure 10 Using asjp sound classes instead of sca sound classes (D1)

figure 11 More strongly splitting cognate coding, θ = 0.35 (D2)
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figure 12 More strongly lumping cognate coding, θ = 0.75 (D3)

figure 13 Using the OnlinePMI cognate coder instead of LexStat (D4)
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figure 14 Binary covarion, strict clock, birth-death tree prior (M)

figure 15 General binary model, strict clock, uniform tree prior (T)
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figure 16 Binary covarion, strict clock, uniform tree prior (MT)

Appendix C: Innovations supporting the East Alor early split

In this section, we present the data for three innovations which support the

early split of East Alor languages from Alor-Pantar, as discussed in Section

4. Sources for the reflexes presented are Kaiping et al. (2019a); Klamer (2018:

242–246), plus additional specific sources for Adang: Haan (2001); Makasae

and its dialect Makalero: Huber (2011, 2017); Kaiping et al. (2019a); Klon-Bring:

Baird (2008); Kafoa: Baird (2017); Kui: Windschuttel and Shiohara (2017); Reta:

Willemsen (2020); Abui-Takalelang: Kratochvíl (2007); Sawila: Kratochvíl

(2014); Wersing: Schapper and Hendery (2014); Western Pantar: Holton (2014).

C.1 *mi ‘inside’

Table 8 lists the cognate sets of proto-TAP *mi ‘be in, at’, proto-Nuclear Alor-

Pantar *om mi ‘(be) inside’, and reconstructions of intermediate forms are

shown in Fig. 17.
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figure 17 Reconstruction of reflexes of *mi

table 8 Reflexes of *mi in the Timor-Alor-Pantar languages

Language Forms reflecting *mi Forms reflecting *ommi

Bunak mil ‘inside’

Makasae mi- ‘Applicative’, (mutuɁu)

Makalero mi- ‘Applicative’, (mutuʔ)

Oirata (muʈwaʔinani)

Fataluku (mutɕune)

Wersing mi- ‘Applicative’,mira ‘inside’,min ‘be at’

Kula mɪ ‘be located’,məra ‘inside’

Sawila ming ‘be located’,mirea ‘inside’

Kamang-Atoitaa mi- ‘Applicative’,mi ‘inside’

Kui mi- ‘Applicative’,mi ‘be in, at’,mare ‘inside’

Kafoa mi ‘be at’ -ommi

Abui-Takalelang mi ‘be in’ -o:mi

Abui-Ulaga mia ‘be in’ -oni

Klon-Bring mi ‘be at; to place’,mi ‘Locative’,mi- ‘Applicative’ -omi

Adang mi ‘be in, at’,mi ‘in, at’ Ɂommi

Blagar-Pura =mi,mi ‘in; to; into; from’ -omi

Reta mi ‘be in’ -o:mi

Kaera-Abangiwang ming ‘be in, at’,mi ‘in; at; to; with’ -ommi

Teiwa meɁ ‘be in’ -ommeɁ

WPantar me ‘Locative’,migang ‘to set’ -ume
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C.2 *hada ‘fire’

figure 18 Reconstruction of reflexes of *hada

table 9 Reflexes of *hada in the Timor-Alor-Pantar languages

(non-cognate forms and parts of forms in parentheses)

Language Forms reflecting *hada ‘fire’

Bunak hɔtɔ

Makasae ata

Oirata aʈa

Fataluku atɕa

Wersing ada

Kula ada

Sawila ada

Kamang-Atoitaa ɑtɪ

Kiraman ar

Kui ar

Kafoa ɑrɑ

Abui ara

Klon-Bring ədɑ

Klon-Hopter ada (wer)

Adang (awai, aɁfai)

Kabola (awal)

Hamap (afail)

Blagar-Pura ad

Reta ad
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table 9 Reflexes of *hada (cont.)

Language Forms reflecting *hada ‘fire’

Kaera-Abangiwang ad (wasing)

Teiwa ħar

WPantar ra

C.3 *habi ‘fish’

figure 19 Reconstruction of reflexes of *habi

table 10 Reflexes of *habi in the Timor-Alor-Pantar languages (non-

cognate forms and parts of forms in parentheses)

Language Forms reflecting *habi ‘fish’

Bunak (ikan)

Makasae afi

Oirata ahi

Fataluku api

Wersing api

Kula api, apu

Sawila api

Kamang-Atoitaa api

Kiraman ɛb

Kui eb

Kafoa-Probur ɑfʊi
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table 10 Reflexes of *habi (cont.)

Language Forms reflecting *hada ‘fire’

Abui afu

Klon-Bring əbi

Klon-Hopter ʔəbiː

Adang-Lawahing aːb

Adang-Otvai hab

Hamap-Moru ʔab

Kabola-Monbang hab

Blagar (all dialects) aba:b

Reta aːb

Reta ʔaːb

Sar haf

Teiwa-Adiabang haf

Teiwa-Lebang ħaf

Teiwa-Nule haf

Deing haf

Western Pantar-Tubbe hap (keʔe)


